

Virtual Reality & Physically-Based Simulation Particle Systems

G. Zachmann University of Bremen, Germany cqvr.cs.uni-bremen.de

How to Model/Simulate/Render Natural Phenomena?

WS December 2012

Definition Particle:

A particle is ideal point with a mass *m* and a velocity **v**. It does not process an orientation.

- Path of a particle = $\mathbf{x}(t)$
- Velocity: $\mathbf{v} = \frac{\text{distance}}{\text{time}} = \frac{\mathbf{x}(t_2) - \mathbf{x}(t_1)}{t_2 - t_1}$

- Unit: *m*/_s
- Note: velocity of particle = vector position of particle = point!

$$\mathbf{v}(t_1) = \lim_{t_2 o t_1} rac{\mathbf{x}(t_2) - \mathbf{x}(t_1)}{t_2 - t_1} = rac{d}{dt} \mathbf{x}(t_1) = \dot{\mathbf{x}}(t_1)$$

- Examples:
 - Point moves on a circular path $\rightarrow \|\dot{\mathbf{x}}\|$ is constant
 - Point accelerates on a straight line $\rightarrow \frac{\dot{\mathbf{x}}}{\|\dot{\mathbf{x}}\|}$ is constant
- Acceleration at some point in time :

$$\mathbf{a}(t) = \frac{\mathsf{d}}{\mathsf{d}t}\mathbf{v}(t) = \dot{\mathbf{v}}(t) = \frac{\mathbf{F}(t)}{m}$$
Newtons 2. Law

- Given: a particle of mass m; a force F(t) that acts on the particle over time
- Wanted: the path **x**(*t*) of the particle
- The analytical approach:

$$\mathbf{v}(t) = \mathbf{v}_0 + \int_{t_0}^t \mathbf{a}(t) \, \mathrm{d}t$$

$$\mathbf{x}(t) = \mathbf{x}_0 + \int_{t_0}^t \mathbf{v}(t) \, \mathrm{d}t$$

Discretization and linearization yields:

$$v^{t+1} = v^t + a^t \cdot \Delta t$$

 $x^{t+1} = x^t + v^t \cdot \Delta t$

or

$$x^{t+1} = x^t + \frac{v^t + v^{t+1}}{2} \Delta t$$

(approx. midpoint method)

The Phase Space

Bremen

W

The (physical) momentary state of a particle is described completely by

$$oldsymbol{q} = (oldsymbol{x},oldsymbol{v}) = (x_1, x_2, x_3, v_1, v_2, v_3) \ = (x_1, x_2, x_3, \dot{x_1}, \dot{x_2}, \dot{x_3}) \in \mathbb{R}^6$$

- The space of all possible states is called *phase space*
- The dimension is 6*n* , *n* = number of particles
- The motion of a particular in phase space:

$$\dot{\mathbf{q}} = (\dot{x}_1, \dot{x}_2, \dot{x}_3, \dot{v}_1, \dot{v}_2, \dot{v}_3) = \left(v_1, v_2, v_3, \frac{\mathbf{f}_1}{m}, \frac{\mathbf{f}_2}{m}, \frac{\mathbf{f}_3}{m}\right)$$

Example for a particle that can move only along the X axis and that is held in a resting position by a spring:

www.myphysicslab.com

Kinematics vs Dynamics

Technical terms:

kinematics = motion of bodies without simulation of forces
dynamics = simulation/computation of forces and the motions
of the objects resulting from them

In computer graphics we always move within a continuum:

Example of pure kinematics: inverse kinematics

Particle Systems

- Definition: a particle system is comprised of
 - 1. A set of particles; each particle *i* has, at least, the following attributes:
 - Mass, position, velocity $(m_i, \mathbf{x}_i, \mathbf{v}_i)$
 - Age *a_i*
 - Force accumulator **F**_i
 - Optional: color, transparency, optical size, lifespan, type, ...
 - 2. A set of particle sources; each one is described by
 - Form of the particle source
 - Stochastic processes that determine the initial attributes of the particles, e.g., velocity, direction, etc.
 - Stochastic processes that determine the number of particles created per frame
 - 3. Other (global) parameters, e.g.
 - TTL (time to live) = max. lifespan of particles
 - Global forces, e.g. gravitation, wind, ...
 - The Algorithms, that move and renderer of particles

Stochastic process =

- Simplest case: average + variance; process outputs random value according to uniform distribution
- A bit more complicated: average and variance functions over time
- Remarked on the form of a particle source:
 - Just an intuitive way to describe the stochastic process for the initial position of particles
 - Frequent forms: disk, cube, cone, etc.

The Execution Model

The "main loop" of a particle system:

```
loop forever:
  render all particles
 \Delta t := rendering time
  kill all particles with age > TTL (max. life-span)
  create new particles at particle source
  reset all force accumulators
  compute all forces on each particle (accumulate them)
  compute new velocities (one Euler step with \Delta t)
  optionally modify velocities (*)
  compute new positions (another Euler step)
  optionally modify positions (e.g. b/c of constraints)
  sort all particles by depth (for alpha rendering)
```

Remarks

Bremen

lUŰ

- There is lots of space for optimizations, e.g.
 - Initialize force accumulators with gravitational force
 - don't increment the age of each particle "by hand"; instead, save the time of their creation in t_{gen}, then just test t_{current} – t_{gen} > TTL
 - Will be important for parallel implementation later
- On (*) in the algorithm:
 - This is "non-physical", but allows for better kinematic control by the programmer/animator
 - This is also necessary in case of collisions
- Often, we store a small history of the positions of particles, in order to create simple "motion blur" effect
- Particulates can be killed by other constraints, too, e.g. distance from the source, entrance into a specific region, etc.
- For an efficient implementation, a "struct-of-array" data structure can be better! (SoA instead of AoS)

Excerpt of "Wrath of Khan":

(Loren Carpenter, William Reeves, Alvy Ray Smith, et al., 1982)

Particle source = circles on a sphere around the *point of impact*, which increase over time

- Stochastic processes for particle creation:
 - Capped cone normal to surface of sphere
 - Some variance of each particles lifespan

. ...

• Color = f(age)

Bremen

lluïi

Digression: the Panspermia Hypothesis

- Position operations:
 - Rather rare, e.g. "tunneling"

Mostly for done collision handling

Physical Effects

• Gravity:

$$\mathbf{F} = m \cdot \mathbf{g}$$
, $g = 9.81 \frac{m}{s^2}$ $\stackrel{m}{\checkmark} F$

Gravitation:

$$\mathbf{F} = G \cdot \frac{m_1 m_2}{r^2} \cdot \frac{\mathbf{x}_1 - \mathbf{x}_2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$
$$G = 6,67 \cdot 10^{-11}$$

Spring force: later

Viscous drag (viskose Hemmung/Dämpfung):

$$\mathbf{F} = -b \mathbf{v}$$

in a stationary fluid/gas;

or, sometimes,

$$\mathbf{F} = 6\pi\eta r(\mathbf{v} - \mathbf{v}_{fl})$$

in fluids with velocity \mathbf{v}_{fl} , particles with radius r, viscosity η ;

or, sometimes,

$$\mathbf{F} = -rac{1}{2}c
ho A\mathbf{v}^2$$

with high velocities; ρ = density, A = size of cross-sectional area, c = viscosity constant

Electromagnetic force (Lorentz force):

$$\mathbf{F} = q \cdot \mathbf{v} \times \mathbf{B}$$

where q = charge of particle , **v** = velocity of particle,

B = magnetic field

The Lennard-Jones Force

- There are two kinds of forces between atoms:
 - A repelling force (abstoßend) on short distances
 - An attracting force on longer distances (called van-der-Waals force or dispersion force)

One (arbitrary) approximation of the Lennard-Jones force:

$$\mathbf{F} = \varepsilon \cdot \left(c \left(\frac{\sigma}{d} \right)^m - \left(\frac{\sigma}{d} \right)^n \right) \cdot \frac{\mathbf{x}_1 - \mathbf{x}_2}{\|\mathbf{x}_1 - \mathbf{x}_2\|}$$

where

$$d = \|\mathbf{x}_1 - \mathbf{x}_2\|$$

and ε , *c*, *m*, *n* are arbitrary constants (for our purposes)

Non-Physical Effects

 $\theta = a \cdot f(r)$

where a = "force" of the vortex,

r = distance particle - axis, and

$$f(r)=\frac{1}{r^{\alpha}}$$

or

$$f(r) = egin{cases} rac{r^4 - 2r^2 + 1}{1 + dr^2} & , \ r \leq 1 \ 0 & , \ r > 1 \end{cases}$$

- Extensions:
 - Take mass of particle into account
 - Use B-spline as axis of the vortex (e.g., for tornado)
 - Animate the axis of the vortex

0.6

0.8

0.8

0.6

0.4

0.2

0.2

0.4

- First of all: collision with a plane
- Collision check:

Collisions

Bremen

llU))

$$(\mathbf{x}^{t}-a)\mathbf{n} > 0 \land (\mathbf{x}^{t+1}-a)\mathbf{n} < 0$$

Collision handling: reflect v

$$\mathbf{v}_N = (\mathbf{v} \cdot \mathbf{n}) \, \mathbf{n}$$

 $\mathbf{v}_T = \mathbf{v} - \mathbf{v}_N$
 $\mathbf{v}' = \mathbf{v}_T - \mathbf{v}_N = \mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n}) \, \mathbf{n}$

Extensions to friction and elastic/inelastic impact:

$$\mathbf{v}' = (1-\mu) \, \mathbf{v}_T - \varepsilon \mathbf{v}_N$$

with $\mu =$ friction parameter and

 ε = resilience (Federung / Elastizität)

- Bremen
- Collision with a sphere:
 - Compute exact intersection of x^tx^{t+1} with s
 - Determine normal n at point s
 - Then continue as before
- Conclusion:

collision detection for particles =
"point inside geoetry test", or
more precisely: intersection tests
between line segment and geometry

- For polyhedra and terrain: see "Computer Graphics 1"
- For implicit surfaces: see "Advanced Computer Graphics"

- Bremen
- Challenge: always create a consistent system after the collision handling!
 - Problem: "double collisions" at narrow places

• There are more ways to handle these kinds of situations ...

PARTICLE DREAMS Karl Sims Optomystic

Hierarchical Particle Systems

Idea:

Bremen

- A particlel represents a whole (lower level) particle system
- Transformation of the parent particle moves the local coord frame of its ancillary particle system (just like with scenen graphs)
- Second-order particle systems:
 - All forces are being represented by particles
 - Forces can, thus, interact with each other, they can die, get born, etc.

- Tehre is no standard method for that
- Common method:
 - Render small discs for particles (splat, sprite, billboard)
 - Often with transparency that decreases toward the rim
 - Needs alpha-blending!
- Alternative:
 - Accumulate the color of all particles in frame buffer (e.g., fire)
 - Needs about 10 Particlels/pixel to look good

Rendering of "Blobby Objects"

 Regard particle as metaballs

Bromon

W

- In CG 2: Metaballs = spheres that blend together to form (implicit) surfaces
- Render using ray-casting
- Either: find root of implicit surface
- Or: accumulate the "density" along ray and interpret this as opacity or as luminance

Rendering of Transparent Objects

Bremen

W

- Transparency ≈ material that lets light pass partially
- Often, some wavelengths are attenuated more than others → colored transparency
 - Extreme case: color filter (photography)

Approximation: Alpha Blending

- $\alpha \in [0, 1]$ = opacity (= opposite of transparency)
 - $\alpha = 0 \rightarrow$ completely transparent,
 - $\alpha = 1 \rightarrow$ completely opaque
- "Color" C_A of object A = transmission spectrum
 (similar to reflectance spectrum of opaque objects, see CG1)
- Outgoing color:

$$C_D = \alpha C_A + (1 - \alpha) C_S$$

- Practical implementation: $\alpha = 4^{\text{th}}$ component in color vectors C_D
- During rendering, the graphics card performs these operations:
 - **1.** Read color from frame buffer $\rightarrow C_S$
 - **2**. Compute C_D by above equation
 - **3.** Write C_D in framebuffer

Cs

- Problem: several transparent objects behind each other!
 - Solution: first A, then $B \rightarrow B$ gets killed by Z-test

 $C'_D = \alpha_A C_A + (1 - \alpha_A) C_S$

- Naïve idea: switch Z-buffer off
 - First A then B (w/o Z-test) results in:

$$C_D = \alpha_B C_B + (1 - \alpha_B) C'_D$$

= $\alpha_B C_B + (1 - \alpha_B) \alpha_A C_A + (1 - \alpha_B) (1 - \alpha_A) C_S$

• First *B* then *A* (w/o Z-test) results in:

$$C'_{D} = \alpha_{B}C_{B} + (1 - \alpha_{B})C_{S}$$

$$C_{D} = (1 - \alpha_{A})\alpha_{B}C_{B} + \alpha_{A}C_{A} + (1 - \alpha_{B})(1 - \alpha_{A})C_{S}$$

Conclusion: you must render transparent polygons/particles from back to front, even if the Z-buffer is switched off!

• Examples (1 is correct, 2 with artifacts):

- In Open GL:
 - Switch blending on:

```
glEnable( GL_BLEND );
```

Determine blending function:

glBlendFrame(Glenum s, Glenum d);

```
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA \rightarrow
C'_D = \alpha C_A + (1 - \alpha) C_B
```

where C_D = color from frame buffer;

 There are many more variants, e.g., you can just accumulate colors (GL_ONE, GL_ONE)

Bremen

Particle System Demos

Randomness 🔵 — Lifetime — Decay 🔵 —

http://www.jhlabs.com/java/particles.html

The Parameters

Display a menu

Flames & Fire

- Goals:
 - 1. Flames that look convincing
 - 2. Complete control over the flames
- The model:
 - Represent individual flame (elements) by parametric curves → "spine" of a flame
 - 2. Regard the control points of the spine as particles
 - 3. Create surface around the spinewhere the burning happens
 - 4. Sample space in the proximity of the surface by "five" particles
 - 5. Render these particles (either volumetrically, or with alpha-blending)
- Controls for animators:
 - Length of spines (average & variance)
 - Lifespan of spine particles
 - Intensity of fire (=number of fire particles; particle sources, wind, etc
 - Color and size of fire particles

• Generation of the *spines*:

- Create a spine particlel P in first frame
- Simulate P: let it move upwards (buoyancy) and sideways (wind)

$$\mathbf{v}_P^{t+1} = \mathbf{v}_P^t + w\left(\mathbf{x}_P, t\right) + b(T_P) + d(T_P)$$

where

w = wind field

b = buoyancy

d = diffusion = noise;

 T_P = temperature of particlel = age

(Simplification here: particles don't have a mass)

- In subsequent frames: create more particles; until max. number per flame is reached
- Connect all spine particles by B-spline

- At top of flames: break flame apart
 - Top part of spine is separated fom rest at a random point in time, if height > H_i
 - Lifespan after the split:

 $A \cdot lpha^3$, $\alpha \in [0, 1]$ zufällig $A = 0.1 \dots 2$ sec

- The profile of a flame:
 - Rotationally symmetric around spine (generalized cylinder)

Rendering:

Bremen

 Sample space around flame by a large number of "fire" particles according to this density function

Brightness of a fire particle at position x:

$$E(\mathbf{x}) = k \frac{D(\mathbf{x})}{n}$$

where *k* = faktor for animator's control, *n* = number of samples

- Rule fo thumb: ca. 10 samples per pixel, ca 10,000 samples per flame
- Discard samples on the inside of obstacles
- Smoke: render fire particles with height > "smoke height" in grey/black

Arnauld Lamorlette and Nick Foster, PDI/DreamWorks

Procedural Modeling of Plants with Particles

- Idea: use particles to simulate the transportation of water inside a leaf
 - Paths of particles constitute the vessels/"arteries" in the leaf
- Axioms:
 - Nature always tries to minimize the total length of all arteries → particles will try to merge
 - 2. No water gets lost or gets added within the arteries \rightarrow

if 2 particles merge their paths, the resulting artery must have twice the cross-sectional area

3. All arteries/paths emanate from the stem of the leaf

W

• Overview of the algorithm:

```
Initialize particles randomly on surface/rim of the leaf
loop until no particle is left:
    move each particle closer towards its nearest neighbor
        or towards an existig path,
        and in the direction of the stem
    if particle has reached the stem:
        kill it
    if two particles are "close enogh" to each other:
        merge both particles
```


- Let \mathbf{x}_{P} = current position of particle *P*
 - \mathbf{x}_T = target position (stem of leaf)
 - $g = point on an existing path closest to <math>x_P$
 - **t** = tangent in **g** (normalized)
 - \mathbf{x}_Q = particle closest to *P*

Bremen

• New position:

$$\mathbf{x}'_{P} = \mathbf{x}_{P} + \alpha \mathbf{w} + (1 - \alpha) \left(\beta \mathbf{v} + (1 - \beta) \mathbf{t}\right)$$

with

$$\beta = \beta \left(||\mathbf{x}_{P} - \mathbf{g}|| \right)$$

 If β is (approximately) linear, this will yield particle paths, that are tangential to existing paths, and perpendicular to them when further away

Else (i.e.,
$$||\mathbf{x}_{P} - \mathbf{x}_{Q}|| < ||\mathbf{x}_{P} - \mathbf{g}||$$
):
Let
$$\mathbf{v} = \frac{\mathbf{x}_{Q} - \mathbf{x}_{P}}{||\mathbf{x}_{Q} - \mathbf{x}_{P}||}$$
New position:
$$\mathbf{x}_{T}$$

$$\mathbf{x}_P' = \mathbf{x}_P + \gamma \mathbf{v} + (1-\gamma) \mathbf{w}$$

- Each particlke has a size = size of cross-sectional area of artery
- At beginning: each particle has unit size
- In case of merging: add sizes
- In case of particle hitting existing path: add size of particle from there on until the stem (target position)

Modeling of Trees

Bremen

W

- Works exactly the same
- Input from the animator: geometry of crown (= particle source)
 - Create particles within the volume by stochastisc process
- Create geometry of branches & twigs by sweeping a disk along the path
- Place leaf primitives at end of twigs

Example of the procedural modeling process:

Incorporation of Lighting Conditions

- Observation: regions with less light irradiation have less branches/leaves
- Can be modeled relatively easy:
 - Put tree inside 3D grid
 - Approximate the (not yet existing) foliage by a spherical or cubical shell
 - Compute light irradiation for each grid node by casting a ray outward
 - During particle creation: modify probability of creation according to irradiation (obtained by trilinear interpolation of grid nodes)

UŬ

WS December 2012

Vintage Video

The Adventures of André and Wally B. (Pixar, 1984)

G. Zachmann Virtual Reality & Simulation WS December 2012

Massivle-Parallel Simulation on Stream Architectures

- Background on streaming architectures (and GPUs):
 - Stream Programming Model =

"Streams of data passing through computation kernels."

- Stream = ordered, homogenous set of data of arbitrary type
- Kernel = program to be performed on *each* element of the input stream
- Sample stream program:

Bremen

W

 Today's GPU's are streaming architectures, i.e., massively-parallel, general purpose computing architectures

G. Zachmann Virtual Reality & Simulation WS December 2012

- Today's GPU's have at least conceptually 1000's of processors
- Each processor (kernel) can read several (a few) elements from the input stream, but it can/should write only one output element!
- Particle Simulation on GPU's:

- Managing (free) memory places:
 - When a particlel dies, record its stream index in a list
 - During particle creation: fill free positions in stream
 - Better perhaps: use p-queue instead of list, sorted by index
 - Advantage: less fragmentation (fewer "holes")
 - Disadvantage: probably impossible to create particles in parallel

Bremen

W

- Reminder: sorting is needed for alpha-blending
- Solution: sorting networks
- Informal definition:
 - Consist of a bundle of "wires"
 - Each wire *i* carries a data element *D_i* (e.g., float) from left to right
 - Two wires can be connected vertically by a comparator
 - If D_i > D_j ∧ i < j (i.e., wrong order), then D_i and D_j are swapped by the comparator before they move on along the wires

- Observation: every comparator network is data independent, i.e., the arrangement of comparators and the running time are always the same!
- Goal: find a (small) set of comparators that performs sorting for any input → sorting network

Example

The 0-1 Principle

Bremen

W

Definition (monotone function):

Let A, B be two sets with a total ordering relation,

and let $f: A \rightarrow B$ be a mapping.

f is called monotone iff

$$orall a_1$$
 , $a_2 \in A$: $a_1 \leq a_2 \Rightarrow f(a_1) \leq f(a_2)$

Lemma:

Let $f: A \rightarrow B$ be monotone. Then the following holds: $\forall a_1, a_2 \in A : f(\min(a_1, a_2)) = \min(f(a_1), f(a_2))$

Analogously for the max.

Proof:

Case 1:
$$a_1 \le a_2 \Rightarrow f(a_1) \le f(a_2)$$

 $\min(a_1, a_2) = a_1$, $\min(f(a_1), f(a_2)) = f(a_1)$
 $f(\min(a_1, a_2)) = f(a_1) = \min(f(a_1), f(a_2))$

Case 2: $a_2 < a_1 \rightarrow \text{analog}$

• Extension of $f: A \rightarrow B$ to sequences over A and B, resp.:

$$f(a_0,\ldots,a_n)=f(a_0),\ldots,f(a_n)$$

Lemma:

Let f be a monotone mapping and \mathcal{N} a comparator network. Then \mathcal{N} and f commute, i.e.

$$\forall n \ \forall a_0, \ldots, a_n : \mathcal{N}(f(a)) = f(\mathcal{N}(a))$$

Proof:

- Let $a = (a_0, \ldots, a_n)$ be a sequence
- Notation: we write a comparator connecting wire *i* and *j* like so:

[i:j](a)

Now the following is true:

$$[i:j](f(a)) = [i:j](f(a_0), \dots, f(a_n))$$

= $(f(a_0), \dots, \underbrace{\min(f(a_i), f(a_j))}_{i}, \dots, \underbrace{\max(f(a_i), f(a_j))}_{j}, \dots, f(a_n))$
= $(f(a_0), \dots, f(\min(a_i, a_j)), \dots, f(\max(a_i, a_j)), \dots, f(a_n))$
= $f(a_0, \dots, \min(a_i, a_j), \dots, \max(a_i, a_j), \dots, a_n)$
= $f([i:j](a))$

- Theorem (the 0-1 principle):
 - Let \mathcal{N} be a comparator network.
 - Now, if \mathcal{N} sorts every sequence of 0's and 1's, then it also sorts every sequence of elements!

Proof (by contradiction):

Bremen

llUï

- Assumption: \mathcal{N} sorts all 0-1 sequences, but does not sort sequence a
- Then $\mathcal{N}(a) = b$ is not sorted correctly, i.e. $\exists k : b_k > b_{k+1}$
- Define $f: A \rightarrow \{0,1\}$ as follows:

$$f(c) = egin{cases} 0, & c < b_k \ 1, & c \geq b_k \end{cases}$$

Now, the following holds:

$$f(b) = f(\mathcal{N}(a)) = \mathcal{N}(f(a)) = \mathcal{N}(a')$$

where *a*′ is a 0-1 sequence.

- But: f(b) is not sorted, because $f(b_k) = 1$ and $f(b_{k+1}) = 0$
- Therefore, $\mathcal{N}(a')$ is not sorted as well, in other words, we have constructed a 0-1 sequence that is not sorted correctly by \mathcal{N} .

Batcher's Odd-Even-Mergesort

Bremen

W

[1968]

- In the following, we'll always assume that the length *n* of a sequence $a_0,...,a_{n-1}$ is a power of 2, i.e., $n = 2^k$
- First of all, we define the sub-routine "odd-even merge":

```
oem(a_0,...,a_{n-1}):
precondition: a_0, \dots, a_{n_2-1} and a_{n_2}, \dots, a_{n-1} are both sorted
postcondition: a_0, \dots, a_{n-1} is sorted
if n = 2:
      compare [a_0:a_1]
                                                                                           (1)
if n > 2:
      \bar{a} \leftarrow a_0, a_2, \dots, a_{n-2} (even sub-sequence)
      \hat{a} \leftarrow a_1, a_3, \dots, a_{n-1} (odd sub-sequence)
      \overline{b} \leftarrow \text{oem}(\bar{a})
      \hat{b} \leftarrow \text{oem}(\hat{a})
                                                                                           (*)
      copy \overline{b} \rightarrow a_0, a_2, \dots, a_{n-2}
      copy \hat{b} \rightarrow a_1, a_3, \dots, a_{n-1}
                                                                                           (**)
       for i \in \{1, 3, 5, ..., n-3\}
             compare [a_i : a_{i+1}]
                                                                                           (2)
```


- Proof of correctness:
 - By induction and the 0-1-principle
 - Base case: n = 2
 - Induction step: $n = 2^k$, k > 1
 - Consider a 0-1-sequence a₀,...,a_{n-1}
 - Write it in two columns
 - Visualize 0 = white, 1 = grey
 - Obviously: both ā and â consist of two sorted halves → preconditon of *oem* is met

Bremen

 After line (**), these comparisons are made, and there can be only 3 cases:

Result: the output sequence is sorted

Conclusion:

each 0-1-sequence (meeting the preconditons) is sorted correctly

• Running time: $T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{2} - 1 \in O(n \log n)$

The complete general sorting-algorithm:

```
oemSort(a_0, \dots, a_{n-1}):
if n = 1:
    return
a_0, \dots, a_{n_2-1} \leftarrow oemSort(a_0, \dots, a_{n_2-1})
a_{n_2}, \dots, a_{n-1} \leftarrow oemSort(a_{n_2}, \dots, a_{n-1})
oem(a_0, \dots, a_{n-1})
```

• Running time: $T(n) \in O(n \log^2 n)$

The Mapping on a Streaming Architecture

- Load data into a stream on the GPU (here, a global variable)
- The CPU executes the following program:

```
oemSort(n):
if n = 1 \rightarrow return
oemSort( n/2 )
oem( n, 1 )
```

```
oem( n, stride ):
if n = 2:
    execute oemEndKernel
    // launches n parallel exec's
else:
    oem( n/2, stride*2 )
    execute oemRecursionKernel
```

• With the stride parameter, we can achieve sorting "in situ"

Kernel for base case of recursion:

```
oemEndKernel ( i, stride ):
// are we on the even or the odd side?
if i/stride is even:
    div = 1
else:
    div = -1
a0 ~ SortData[i] // SortData = stream =
a1 ~ SortData[ i+div+stride ] // globales "array"
if div > 0:
    output max(a0,a1) // write output
else:
    output min(a0,a1) // in output stream
```

- The oemEndKernel implements line (1) of the algorithm
- Reminder: a kernel is executed in parallel for each index i = 0, ..., n-1 in a stream; i is provided by the GPU, not the CPU!

• The kernel for finishing up a recursion:

```
oemRecursionKernel(i, stride):
if i < stride || i ≥ n-stride:
    output SortData[i]
else:
    a_i ← SortData[i]
    a_i_plus_1 ← SortData[ i+stride ]
    if i/stride is even:
        output max(a_i, a_i_plus_1)
else:
        output min(a_i, a_i_plus_1)
```

- The oemRecursionKerneler implements line (2) of the algorithm
- Again, index *i* = 0, ..., *n*-1

• Running time:
$$\frac{1}{2}\log^2 n + \frac{1}{2}\log n$$
 rendering passes

- This are 210 passes for 2²⁰ particles
 - For particle systems, this can be done incrementally, i.e. only a few sorting passes per frame (might return "not quite" sorted particles, which is sometimes OK, e.g. for fire)

N-body simulation

http://www.nvidia.com/cuda

G. Zachmann Virtual Reality & Simulation WS December 2012

